
Modal Superlatives

Maribel Romero University of Konstanz

6th International Symposium of Cognition, Logic and Communication. Formal Semantics and Pragmatics: Discourse, Context, and Models. Riga, November 19-21, 2010

1. Introduction

- It is assumed that gradable adjectives denote relations between individuals and degrees: (1). Gradable adjectives are downward monotonic; that is, if Maribel is 156cm tall, then *tall(m,156cm)* is true, *tall(m,155cm)* is true, *tall(m,154cm)* is true, etc.
- (1) Maribel is 156 centimeters tall.

- The comparative morpheme *-er* and the superlative morpheme *-est* operate on the degree argument of gradable predicates. Intuitively:
- (2) John is taller than Bill \Leftrightarrow John is tall to a degree to which Bill is not \Leftrightarrow $\exists d [tall(j,d) \land \neg tall(b,d)]$ (Seuren 1973)
- (3) John is the tallest (in group C)
 - \Leftrightarrow John is tall to a degree to which nobody else in group C is tall
 - $\Leftrightarrow \quad \exists d \ [\ tall(j,d) \& \forall z \in C \ [z \neq j \rightarrow \neg tall(z,d)] \] \qquad (Heim \ 1999)$
- Superlatives with modal modifiers like *possible* (Corver 1997, Larson 2000, Schwarz 05): Prenominal *possible* with superlatives, as in (4)-(5), gives rise to two readings. Some interesting syntactic restrictions have been observed: ① and ②.
- (4) I bought the largest possible present.
 a. "Out of objects that were possible presents, I bought the largest one."
 b. "I bought as large a present as it was possible for me to buy."
- (5) I talked to the few<u>est possible</u> guests.
 - a. "Out of the individuals that were possible guests, I talked to the fewest."
 - b. "I talked to as few guests as it was possible for me to talk to."
 - Ambiguous: (a) Regular Noun modifier *possible*
 - (b) Modal superlative reading: "as X as possible"

- RESTRICTION ①: Postnominal *possible* only has modal superlative reading (Larson00).
- (6) I bought the largest present possible.
 a. * "Out of objects that were possible presents, I bought the largest one."
 b. "I bought as large a present as it was possible for me to buy."
- (7) I talked to the few<u>est guests possible</u>.
 a. * "Out of the individuals that were possible guests, I talked to the fewest."
 b. "I talked to as few guests as it was possible for me to talk to."
 - RESTRICTION 2: Prenominal *possible* requires syntactic locality with the superlative morpheme *-est* in order for the modal superlative reading to arise. (Schwarz 2005):
- (8) Ich habe das größt.e möglich.e Geschenk gekauft.
 I have the largest.Infl possible.Infl present gekauft
 'Out of the possible presents, I bought the largest one.' REGULAR MODIFIER
- (9) Ich habe das größt möglich.e Geschenk gekauft.
 I have the largest possible.Infl present gekauft
 'I bought as large a present as it was possible for me to buy.' MODAL SUPERLATIVE
- (10) I bought the largest affordable possible present.
 a. "Out of objects that were affordable possible presents, I bought the largest one."
 b. * "I bought as large an affordable present as it was possible for me to buy."
- (11) I bought the most expensive possible present.
 a. "Out of objects that were possible presents, I bought the most expensive one."
 b. * "I bought as expensive a present as it was possible for me to buy."
- Previous analyses of the modal superlative reading:
 - Larson (2000) on ①: *possible* + ACD generated postnominally; promotion to prenominal position.
 - Schwarz (2005) on 2: non-decomposible degree operator -est possible.
- (12) $[[-est possible]]^{w} = \lambda P_{\langle s, dt \rangle}. \forall d [\exists w'[wRw' \& P(w')(d)=1] \rightarrow P(w)(d)=1]$
- MAIN GOAL of this talk

To provide a COMPOSITIONAL ANALYSIS of the MODAL SUPERLATIVE READING that:

- (i) allows us to reconcile the observations ① and ② about its surface syntax,
 - [-est possible] (together with some covert material) will be treated as a syntactic unit (with Schwarz 2005, contra Larson 2000), further decomposible (contra Schwarz 2005).
 - The modal superlative reading arises from an LF structure with an ACD clause (with Larson 2000, contra Schwarz 2005).
- (ii) uses LF structures independently motivated for superlatives and degree constructions,
- (iii) and derives the correct truth conditions.
 (4b): "I bought as large a present as it was possible for me to buy and no larger."

•	Comparative <i>-er</i> : crosslinguistically, we find a 3-place predicate <i>-er</i> , as in (13)-(14), and a 2-place predicare <i>-er</i> , as in (15)-(17) (Bhatt and Takahashi 2008).	
(13)	Atif-ne Boman-se zyaadaa kitaabe parh-i Atif-Erg Boman-than more books.f read-Pfv.FP1 'Atif read more books than Boman.'	(Hindi-Urdu)
(14)	$\lambda x_{e}.\lambda P_{\langle d,et \rangle}.\lambda y_{e}. \exists d [P(d)(y) \& \neg(P(d)(x))]$	(3-place - <i>er</i>)
(15)	John is taller than Mary is. a. LF: [-er [(than) 1 Mary is $-tall>]] [2 John is t_2-tall]b. [[2 John is t_2-tall]]w = \lambdad'. tall(j,d')c. [[1 Mary is t_1-tall]]w = \lambdad'. tall(m,d')$	
(16)	$\lambda Q_{\leq d,t \geq}$. $\lambda P_{\leq d,t \geq}$. $\exists d [P(d) \& \neg(Q(d))]$	(2-place - <i>er</i>)
(17)	John is taller than 2 meters. a. LF: [-er [(than) 2 meters]] [2 John is t ₂ -tall] b. [[2 John is t ₂ -tall]] ^w = λ d'. tall(j,d') c. [[2 meters]] ^w = λ d'. d'≤2m c'. [[2 meters]] ^w = 2m Type shifter SHIFT = λ d". λ d'. d'≤d" SHIFT([[2 meters]] ^w) = λ d'. d'≤2m	[Cf. (1)] [Cf. Partee (1987)]

■ Consequences for the bigger picture of comparative and superlative constructions:¹

Superlative -est: the 3-place predicate -est and the 2-place predicate -est have been proposed as theoretical alternatives to each other. Evidence for the 3-place lexical entry (18) comes from cases like (19), with overt argument of type <e,t>.
 As a SECONDARY GOAL, the present talk provides EMPIRICAL EVIDENCE suggesting that we also need the 2-PLACE -est LEXICAL ENTRY in (20).

(18) $\lambda C_{\langle e,t \rangle} \cdot \lambda P_{\langle d,et \rangle} \cdot \lambda x_e$. $\exists d [P(d)(x) \& \forall z \in C[z \neq x \rightarrow \neg (P(d)(z))]]$ (3-place -est)

(19) John is the tallest among the candidates.

(20) $\lambda C_{dt,t>}$. $\lambda P_{d,t>}$. $\exists d [P(d) \& \forall Q \in C [Q \neq P \rightarrow \neg(P(d))]]$ (2-place -est)

■ Plot of the rest of this talk:

- §2. Background: LF analyses of superlatives.
- §3. Proposal using the 2-place lexical entry -est.
- §4. Attempts with the 3-place lexical entry -est and their drawbacks.
- §5. Concluding remarks.

¹ Thanks to Irene Heim (p.c.) for pointing out the relevance of the comparative data and of the 2-place/3-place discussion.

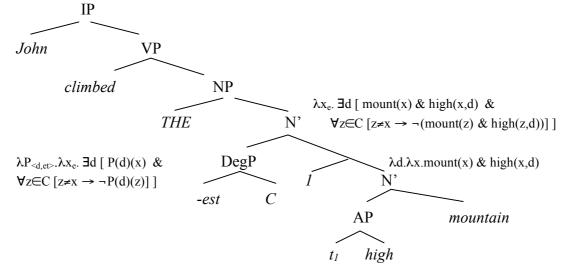
2. Background: LF analyses of superlatives

- Ambiguity found in superlatives with covert argument C (Szabolcsi 1986, Heim 1999):
- (21) John climbed the highest mountain.a. ABSOLUTE reading: "John climbed a mountain higher than any other mountain."b. RELATIVE reading: "John climbled a higher mountain than anybody else climbed."
- (22) Who wrote the largest prime number on the blackboard?a. Nobody, of course! There is no largest prime number!b. John did. He was the only one above 100.ABSOLUTE reading RELATIVE reading

2.1. Analysis of the ambiguity using 3-place -est. (Heim 1999)

- (23) 3-place lexical entry and presuppositions:
 [[-est]] = λC_{<e,t>}.λP_{<d,et>}.λx_e. ∃d [P(d)(x) & ∀∈C [z≠x → ¬(P(d)(z))]] Presuppositions:
 (a) the third argument, x, is a member of the first, C.
 (b) all the members of the comparison set C have the property P to some degree.
- Assumptions:

-est can undergo LF movement out of its host DP.

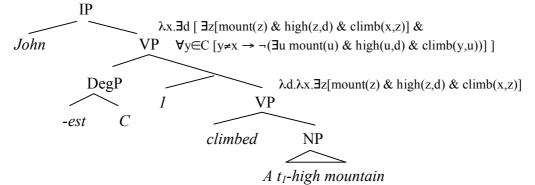

The definite article the is semantically vacuous. Instead, THE or A.

Thesis:

The LF position of -est determines P, which in turn delimits the possible choices for C, which in turn determines whether we get the absolute or the relative reading.

- The ABSOLUTE reading:
- (24) John climbed the highest mountain.

 $\mathsf{climb}\;(\;j,\iota x_e.\; \exists d\;[\; \mathsf{mount}(x)\;\&\; \mathsf{high}(x,d)\;\;\&\; \forall z {\in} C\;[z{\neq}x \rightarrow \neg(\mathsf{mount}(z)\;\&\; \mathsf{high}(z,d))]\;]\;)$


(25) a. LF: John climbed [THE [-est C] 1 [t_1 -high mountain]] b. Absolute reading: C = {x: x is a mountain on earth}²

² (25a) also allows for the relative reading. See Heim (1999), Sharvit & Stateva (2002), Büring (2007).

■ The RELATIVE reading:

(26) John climbed the highest mountain.

 $\exists d [\exists z[mount(z) \& high(z,d) \& climb(j,z)] \& \forall y \in C [y \neq x \rightarrow \neg (\exists u mount(u) \& high(u,d) \& climb(y,u))]]$

(27) a. LF: John [-est C] 1 [climbed [A t₁-high mountain]]
b. Due to presuppositions in the lexical entry of *-est*, C has to be a set containing John and other (relevant) climbers of mountains with some degree of height or other.

2.2. Analysis of the ambiguity using 2-place -est. (Heim 1999)

- (28) $[[-est]] = \lambda C_{\langle dt, t \rangle} \cdot \lambda P_{\langle d, t \rangle} \cdot \exists d [P(d) \& \forall Q \in C [Q \neq P \rightarrow \neg Q(d)]]$ Plus presupposition: P is a member of C.
- Assumptions:

-est can undergo LF movement out of its host DP.

The definite article *the* is semantically vacuous. Instead, THE or A.

Observation:

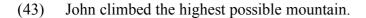
The relative superlative reading is sensitive to Focus: (29).

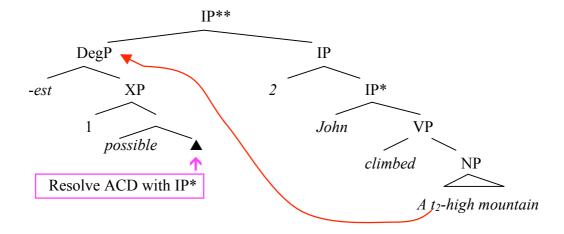
Thesis:

The LF position of *-est* determines whether we get the absolute or the relative reading. The focus structure of the complement of *-est* shapes the reading further.

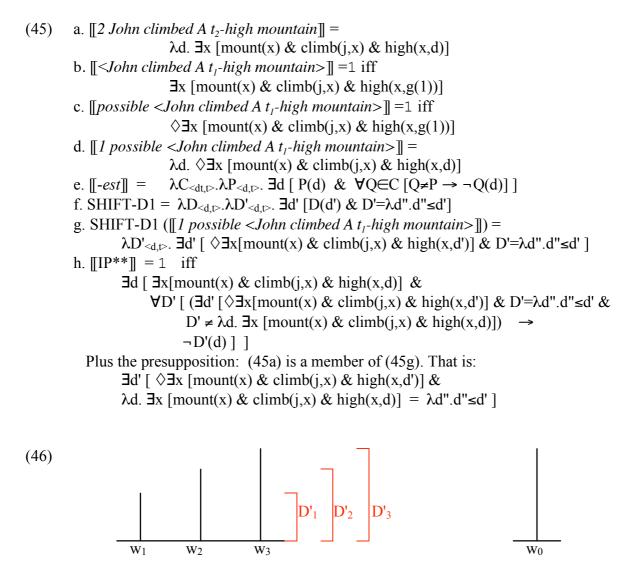
- (29) a. John wrote the longest letter to MARY.b. JOHN wrote the longest letter to Mary.
- RELATIVE reading:
- (30) JOHN climbed the highest mountain.
- (31) LF: [-est C] 1[JOHN_F climbed A t₁-high mountain] ~ C where C \subseteq { λd . John climbed a d-high mountain, λd . Bill climbed a d-high mountain, λd . Chris climbed a d-high mountain}
- (32) ∃d [John climbed a d-high mountain & ¬(Bill climbed a d-high mountain) & ¬(Chris climbed a d-high mountain)]

- ABSOLUTE reading [MR's version]
- (33) Extra assumption: Traces and other empty categories can be focus-marked.
- (34) a. I met the person that John wrote the longest letter to t_F . Cf. (29a) b. I met the person that t_F wrote the longest letter to Mary. Cf. (29b)
- (35) How does one impress Mary? By PRO_F writing the longest letter to her.
- (36) John climbed the highest mountain.


(37) LF: John climbed THE 2 [[-est C] 1 [$t_{2,F} t_1$ -high mountain] ~ C] Hence, it is presupposed that C \subseteq { $\lambda d. d$ -high mountain (Everest), $\lambda d. d$ -high mountain (Kilimanjaro), $\lambda d. d$ -high mountain (Aneto) }


(38) John climbed the unique x: $\exists d \ [d-high mountain(x) \& \forall Q \in C \ [Q \neq \lambda d'.d'-high mountain(x) \rightarrow \neg Q(d)] \]$

3. Proposal using the 2-place lexical entry -est.


- (39) John climbed the highest possible mountain.a. Modal superlative reading: "He climbed as high a mountain as it was possible for him to climb".
- (40) 2-place lexical entry: $\begin{bmatrix} -est \end{bmatrix} = \lambda C_{\langle dt,t \rangle} \lambda P_{\langle d,t \rangle} \exists d [P(d) \& \forall Q \in C [Q \neq P \rightarrow \neg Q(d)]]$ Plus presupposition: P is a member of C.
- IDEA using the 2-place -*est* in (40):
 - Sometimes the comparison argument slot $\lambda C_{dt,t>}$ is filled by a free variable. Then the value of C is resolved contextually, often via focus, as in §2.2. Cf. comparatives (41).
- (41) a. John is taller.b. John sent more pictures to MARY.c. JOHN sent more pictures to Mary.
 - Sometimes the comparison argument slot $\lambda C_{\leq dt,t \geq}$ is filled with syntactic material. The denotation of this material is directly fed into the slot $\lambda C_{\leq dt,t \geq}$. We claim that <u>this</u> is the case of the modal superlative reading at issue. Cf. comparative in (42).
- (42) John is taller than Mary is / than 2m. (=(15), (17))

Example:

(44) [-est [1 possible <John climbed A t₁-high mount>]] [2 John climbed A t₂-high mount]

■ Further background assumptions:

Most as many + -est (Hackl 2009).

(47) [many] = $\lambda d_d \cdot \lambda x_e$. $|x| \ge d$ [Adapted from Hackl 2009]

- *Fewest* as LITTLE + many + -est, where LITTLE basically amounts to negation and can scope not just over the adjective it originates with but also higher. Cf. Rullmann's ambiguity in (48) (Heim 2006).
- (48)Lucinda is driving less fast than is allowed on this highway.
 - a. "L is driving below the maximum speed limit" LF for *than*-clause: wh3 [t_3 LITTLE] 4 [allowed Lu drive t_4 fast] b. "L is driving below the minimum speed limit".
 - LF for *than*-clause : wh3 allowed $[t_3 \text{ LITTLE}] 4 [Lu drive t_4 fast]$

■ Further examples of modal superlatives:

- John climbed the most possible mountains. (49)
- (50)[-est [1 possible <John climbed t₁-many mounts>]] [2 John climbed t₂-many mounts]
- (51) a. $[2 John climbed t_2-many mountains]] =$ $\lambda d. \exists x [mount(x) \& climb(j,x) \& |x| \ge d]$ b. SHIFT-D1 = $\lambda D_{\langle d,t \rangle}$. $\lambda D'_{\langle d,t \rangle}$. $\exists d' [D(d') \& D' = \lambda d''. d'' \leq d']$ c. SHIFT-D1 ([[1 possible <John climbed t_1 -many mountains>]]) = $\lambda D'_{d,t>}$. $\exists d' [\Diamond \exists x [mount(x) \& climb(j,x) \& |x| \ge d')] \& D' = \lambda d'' . d'' \le d']$ $\exists d [\exists x [mount(x) \& climb(j,x) \& |x| \ge d] \&$ d. [[(50)]] = \forall D' [(\exists d' [\Diamond \exists x[mount(x) & climb(j,x) & |x| \ge d')] & D'= λ d".d" \le d'] & D' $\neq \lambda d$. $\exists x [mount(x) \& climb(j,x) \& |x| \ge d])$ $\rightarrow \neg D'(d)$]] Plus presupposition: (51a) is a member of (51c).
- John climbed the fewest possible mountains. (52)
- [-est [1 possible <LITTLE John climbed t₁-many mounts>]] [2 LITTLE John climbed t₂-(53) many mounts]
- (54) a. $[[2 LITTLE John climbed t_2-many mountains]] = \lambda d. \neg \exists x [mount(x) \& climb(j,x) \& |x| \ge d]$ b. SHIFT-D2 = $\lambda D_{(d,t)}$. $\lambda D'_{(d,t)}$. $\exists d' [D(d') \& D' = \lambda d''. d'' \ge d']$ c. SHIFT-D2 ([[1 possible <LITTLE John climbed t_1 -many mountains>]]) = $\lambda D'_{<d,>}$. $\exists d' [\Diamond \neg \exists x[mount(x) \& climb(j,x) \& |x| \ge d')] \& D' = \lambda d''. d'' \ge d']$ $\exists d [\neg \exists x [mount(x) \& climb(j,x) \& |x| \ge d] \&$ c. [(53)] = \forall D' [(\exists d'[$\Diamond \neg \exists$ x[mount(x) & climb(j,x) & |x| \ge d'] & D'= λ d".d"≥d'] & D' $\neq \lambda d$. $\neg \exists x [mount(x) \& climb(j,x) \& |x| \ge d])$ $\rightarrow \neg D'(d)$]]

Plus presupposition: (54a) is a member of (54c).

4. Attempts with the 3-place lexical entry -est and their drawbacks.

(55) 3-place lexical entry:
[[-est]] = λC_{<e,t>}.λP_{<d,et>}.λx_e. ∃d [P(d)(x) & ∀∈C [z≠x → ¬(P(d)(z))]] Presuppositions:
(a) the third argument, x, is a member of the first, C.
(b) all the members of the comparison set C have the property P to some degree.

4.1. Scoping 3-place -est inside the host NP.

- LF and derived truth conditions:
- (56) John climbed the most possible mountains.
- (57) John climbed [A [-est possible (...)] 1 t₁-many mountains] $\lambda d_d \lambda x_e$. mountains(x) & $|x| \ge d$

 λy_{e} . $\Diamond \exists d [mountains(y) \& |y| \ge d \& climb(j,y)]$

- (58) $\exists x \ [\ climb(j,x) \& \exists d \ [mountains(x) \& |x| \ge d \& \\ \forall y \in [[possible (...)]] \ [y \neq x \rightarrow \neg (mountains(y) \& |y| \ge d)] \] \]$
- (59) Paraphrase:

"Out of the set of mountain-sums y that it is possible for John to climb, the cardinality of the sum x that John actually climbed is greater than the cardinality of any sum y non-overlapping with x."

(Hackl 2009: for sums, $y \neq x$ as "y does not overlap with x".)

- Drawbacks:
 - 😕 Not clear how the elliptical material is recovered.
 - B This compares certain mountain-sums and picks the/a particular sum that has the relevant property -- "manyhood"-- to the highest degree. This produces <u>not the Modal Superlative reading</u>, but the reading "more than half of the permitted mountains".

4.2. Scoping 3-place -est inside the host NP, plus amount reading.

- LF and derived truth conditions:
- (60) John climbed the fewest possible mountains.
- (61) John climbed [A mountains IN A [-est possible (...)] 1 [[t₁ LITTLE LARGE] AMOUNT]]

 $\lambda d_{d} \cdot \lambda n_{e}$. amount(n) & \neg large(n,d)]

 $\lambda n'_{e}$. $\neg \exists y \exists d [mountains(y) \& |y|=n' \& climb(j,y) \& large(n',d)]$

(62) $\exists x [mountains(x) \& climbed(j,x) \& \exists n [|x|=n \& \\ \exists d [\neg large(n,d) \& \forall n' \in [[possible (...)]] [n' \neq n \rightarrow large(n',d)]]]]$

(63) Paraphrase:

"Out of the amounts n' such that it is possible for John to fail to climb n'-many mountains, there is a mountain-sum that John climbed whose cardinality is the smallest of those amounts."

- Drawbacks:
 - 8 Extra syntactic material needed: *LARGE AMOUNT*. Not clear how ellipsis is recovered.
 - 8 The resulting truth conditions are <u>too weak</u>:
- (64) Scenario: The rules in w₀ permit that John climbs 10 mountains or more. In w₀ John happens to climb exactly 15 mountains.
 Sentence (60) → FALSE Formula (62) / paraphrase (63) → TRUE

4.3. Scoping 3-place -est out of the host NP.

- LF and truth conditions:
- (65) John climbed the fewest possible mountains.
- (66) [-est possible (...)] 1 LITTLE John climbed [A mountains IN A [[t₁ LARGE] AMOUNT]]

 $\lambda d_{d} \cdot \lambda n_{e}$. amount(n) & large(n,d) & $\neg \exists x [mountains(x) \& climb(j,x) \& |x| \ge n]$

 $\lambda n'_{e}$. $\langle \neg \exists y \exists d [mountains(y) \& climb(j,y) \& |y| \ge n' \& amount(n') \& large(n',d)]$

- (67) $\lambda n_e. \exists d [amount(n) \& large(n,d) \& \neg \exists x [mountains(x) \& climb(j,x) \& |x| \ge n] \& \forall n' \in [[possible (...)]] [n' \ne n \rightarrow \neg (amount(n') \& large(n',d) \& \neg \exists x [mountains(x) \& climb(j,x) \& |x| \ge n'])]]$
- Drawbacks:
 - Extra syntactic structure is still needed, and it is not clear how the indicated denotations would be built compositionally.
 - ⁽⁸⁾ The top node of the computation ends up with the wrong type, but perhaps one can posit a default existential closure there.
 - 8 We would need to assume two formal predicates *large*: amount 15 is larger than amount 10 when we talk bout climbed amounts, but the other way around when we talk about unclimbed amounts.
 - But, if the 3-place version of *-est* and *LITTLE* can extract that high in (66), then one would expect for them to also be able to extract to the position immediately under *John*. This would derive a <u>spurious relative</u> reading for (65) comparing mountain-climbers and their achievements: (68).
- (68) Missing relative reading wrt mountain-climbers:
 - a. LF: John [-est possible (...)] 1 LITTLE climbed [A mountains IN A t₁ LARGE AMOUNT]
 - b. Paraphrase: "Of the mountains climbers for whom it is allowed to fail to climb some amount of mountains, John is the one for whom the greatest failure is allowed."

5. Concluding remarks

- A compositional analysis of the modal superlative reading has been proposed that:
 - (i) reconciles the observations about its surface syntax, namely:
 - Locality requirement: *[-est [possible ▲]]* is a syntactic unit.
 - Prenominal *possible* can be a regular N-modifier or a reduced Relative Clause. Regular adjectival modifiers do not generally postpone in English; (reduced) Relative Clauses can postpone. Hence, if *possible* appears postnominally, it must be introducing a reduced Relative Clause with an elided IP. This reduced RC with ellipsis can in principle be interpreted as ranging over degrees (= modal superlative reading), or as relative clause ranging over individuals (=regular modifier reading). However, it seems that, independently of *-est*, reduced RCs with ellipsis cannot be interpreted as ranging over individuals: (69). We leave this question open for future research.
- (69) a. I bought a present that it was possible for me to buy.
 - b. I bought a present possible for me to buy.
 - c. * I bought a present possible.
 - (ii) uses ingredient and Logical Form structures independently motivated for superlatives and/or other degree constructions:
 - 2-place lexical entry for -est. Cf. comparatives.
 - The complement (the comparison set) of *-est* filled out with syntactic material other than a free variable.
 - Type shift SHIFT in several versions
 - Relative LF
 - Decomposition of most as many + -est and least as LITTLE + many + -est.
 - Scope of *LITTLE*

(iii) and derives the desired truth conditions: "(exactly) as X as possible"

- Attempts at deriving the modal superlative reading with the 3-place lexical entry for *-est* present problems: (a) they require extra syntactic material, (ii) they fail to generate the correct truth conditions for the modal superlative reading, and/or (iii) they generate spurious readings together with the correct ones.
- The bigger picture of comparatives and superlatives: If the analysis presented here is correct, it provides empirical motivation for a separate 2place -est.
- (70) Comparative -*er*: a. λx_e . $\lambda P_{<d,et>}$. λy_e . $\exists d [P(d)(y) \& \neg (P(d)(x))]$ (3-place) b. $\lambda Q_{<d,t>}$. $\lambda P_{<d,t>}$. $\exists d [P(d) \& \neg (Q(d))]$ (2-place)
- (71) Superlative *-est*: a. $\lambda C_{\langle e, \triangleright}$. $\lambda P_{\langle d, e \triangleright}$. λx_e . $\exists d [P(d)(x) \& \forall z \in C[z \neq x \rightarrow \neg (P(d)(z))]]$ (3-place) b. $\lambda C_{\langle d, t \rangle}$. $\lambda P_{\langle d, t \rangle}$. $\exists d [P(d) \& \forall Q \in C [Q \neq P \rightarrow \neg (P(d))]]$ (2-place)

REFERENCES

- Bhatt, R. and S. Takahashi. 2008. When to reduce and when not to: crosslinguistic variation in phrasal comparatives, GLOW XXXI.
- Büring, D. 2007. Comparative Sandwichology, WECOL.
- Corver, N. 1997. Much-support as last resort, Linguistic Inquiry 21:119-164.
- Hackl, M. 2009. On the Grammar and Processing of Proportional Quantifiers: *Most* versus *More Than Half, Natural Language Semantics* 17.1: 63-98.
- Heim, I. 1999. Notes on Superlatives. MIT lecture notes.
- Heim, I. 2006. Little. In Proceedings of SALT XVI. Cornell: CLC Publications.
- Larson, R. 2000. ACD in AP? paper presented at WCCFL 19.
- Partee, B. 1987. Noun phrase interpretation and type shifting principles, in J. Groenedijk et al. (eds.) *Studies in Discourse Representation Theory and the theory of generalized quantifiers*. Dordrecht: Foris.
- Rullmann, H. 1995. Maximality in the semantics of WH-constructions. Amherst: GLSA.
- Schwarz, B. 2005. Modal Superlatives, in *Proceedings of SALT XV*. Cornell: CLC Publications. Pp. 187-204.
- Sharvit, Y. and P. Stateva. 2002. Superlative Expressions, Context, and Focus, *Linguistics and Philosophy* 25:453-505.
- Seuren, P. A. M. 1973. The Comparative. In: F. Kiefer and N. Ruwet, eds., *Generative Grammar in Europe*.
- von Stechow, A. 1984. Comparing semantic theories of comparison, *Journal of Semantics* 3:1-77.
- Szabolcsi, A. 1986. Comparative Superlatives, in N. Fukui et al., eds., *Papers in Theoretical Linguistics*, MITWPL 8, Cambridge.